

saving of **70-80%** of your cost of steam only possible by Hamada Coal Fired Boiler *FLUIDIZED BED SYSTEM*

Kazuhiro Hamada Chairman of Hamada Boiler Group hamadalo@attglobal.net

Sir/Madam:

There is a fast evolving trend with regards to alternative fuel utilization now happening in the industrial or manufacturing sector of WHOLE WORLD which we believe you need to know as business owner or decision maker.

DO YOU KNOW?

THAT... due to the consistently rising price of petroleum products, most of government now is encouraging industry to shift to cheaper alternative fuel which is surely "COAL" in most of countries, whether the country has its own coal reserves or source it from outside.

THAT... among several indigenous alternative fuel available in Asian countries, COAL is the most abundant, cheap and readily available locally even on retail and door-to-door delivery basis.

THAT... the modern **Fluidized Bed Combustion Coal-Fired Boiler System**, otherwise known as the Clean Coal Technology, is now available in all asian countries by Hamada Boiler. It being fully compliant with environmental and pollution standard of all respective countries, it is presently being used by most industry leaders in paper, textile, food and beverage, chemical and rubber, among others.

THAT... with the relative calorific values and current prices of Coal and Bunker Oil in all Asian countries, more than 70% savings in fuel cost and an average of 6-months payback on investment is guaranteed when a factory shifts from bunker oil to coal-fired boiler system.

THAT... the state-of-the-art **HAMADA BUBBLING FLUIDIZED BED COMBUSTION BOILER SYSTEM**, having been introduced to Asian countries since 1985, is the pioneer and market leader in the area for coal-fired industrial process steam boiler and now accounts for more than one hundreds (200) industrial coal-fired boilers users. We have completed 4 powerplants since 2002 at Toray Tangerang(ITS),NIKAWATEX of Karawang (75 ton x 2 units with 30 MW condensing turbine and 35 ton boiler with 6 MW extraction turbine) and EASTERNTEX of Surabaya (75 ton with 15 MW).

THAT... to be able to know more about this important trend, you simply go to this website: http://www.hamadaboiler.com or call any of our branch offices for more details.

STRIAL LIMIT lomature(s)

Kazuhiro Hamada Chairman of Hamada Boiler Group hp +62 8161674489

TUFF-Hamada Boiler Hangzhou China Factory

ASIAN SALES / SERVICE NETWORK as of November 2008

THAILAND

HAMADA BOILER (THAILAND) CO., LTD.

38 Mooban Seree 3 Soi 5, Rama IX Road Soi 49, Suanluang, Bangkok 10250, Thailand Tel. +66-2-718 9815 Fax. +66-2-718 9814

Manager: Alwin Wirianata (hp:+66 19368800) Email: alwin_hamadaboiler@yahoo.co.jp

VIETNAM MARTECH COMPANY LIMITED

A5/17B Cong Nghe Moi St., Vinh Loc B Binh Chanh Dist., Ho Chi Minh City, Vietnam Tel. +84 8 7541464 Fax. +84 8 7541466

Manager: Duong Quoc Bao (hp:+84-913623811) Email: martech@hcm.vn

MALAYSIA

HAMADA COMBUSTION TECHNOLOGY (M) SDN.BHD.

No. 61A, Jalan SS15/4E, Subang Jaya 47500, Malaysia Tel. +60 3 5633 7589 Fax. +60 3 5634 7589 GM: Mr. Dakila G. Palomo (hp:+62 811334633) Email: dakila_hamadaboiler@yahoo.co.jp Local Manager: Mr. Ernesto Foo (hp:+60 123317589) Email: foo_hamadaboiler@yahoo.co.jp

JAKARTA-INDONESIA PT. HAMADA DAYATEKNINDO

Jl. Puri Kencana Blok K-20, Perkantoran Puri Niaga 1 Kembangan, Jakarta Barat, Indonesia Tel. +62 21 582-3173 Fax. +62 21 582-3174

Manager: Mr. Dakila Palomo (hp:+62 811334633) Email: dakila@hamadaboiler.com

SURABAYA-INDONESIA PT. HAMADA DAYATEKNINDO

Jl. Raya Jajar Tunggal Selatan Blok K No. 5 Darmo Sentosa Raya, Surabaya 60229, Indonesia Tel. +62 31 5634014 Fax. +62 31 5689367 GM: Mr. Dakila G. Palomo (hp:+62 811334633) Email: dakila hamadaboiler@vahoo.co.ip

HONGKONG SIREGRAND INDUSTRIAL LIMITED

ain

Manila

Hangzhou

Hongkong

Hochiminh

Surabava

Bangko

Jakarta

Kualalumpur

Room 801 Far East Consortium Building 121 Des Voeux Road, Central Hongkong Tel. +852-2540 8939 Fax. +852-2540 7962 Manager: Mr. Lo Kwan (hp:+852 97637975) Email: lonchinon@hotmail.com

Hangzhou Spedial Boiler Works (TUFF-Hamada Boiler Factory) Hangzhou City, Zhejiang Province, China

TAIWAN-R.O.C.

HAMADA BOILER TAIWAN OFFICE

21st Fl, Unit #2, No. 441 Jingguo Road, Romantic Paris, Taoyuan City Taoyuan County 330, Taiwan (R.O.C) Tel. +886-3-346 9392 Fax. +886-3-346 8308 Manager: Mr. Liu Yuchen (Dunkan Liu) (hp:+886-913135757) Email: liuyuchen66@yahoo.com.tw

PHILIPPINES COAL COMBUSTION SYSTEMS (PHIL) INC.

No.53, Victoria Ane. New Manila, Quezon City 1112 Philippines- Tel. & Fax. +63-2-4127713 Manager: Mr. Kazuhiro Hamada (hp:+63 9209828303) Email: hamadalo@attglobal.net Marketing Office: Contace person: Mr. Manuel G. Palomo Tel. +63-2-5842508 Fax. +63-2-4168431

COMPARISON CHART OF COST OF STEAM IN VARIOUS COUNTRIES

PHILIPPINES	Conversior	n Rate:	US\$1.00=	Php 45.00	as of Aug 01	, 2008		
			COS	T OF STEA	M PER TON			
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	PRICE	COST	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(PESO)	US \$	PER/KCAL	PER TON/HR	PESO/ton STEAM	vs COAL
DIESEL FUEL	9,063	LITER	56	1.2444	0.00618	77.88 Liter	4,361.28	86.99
BUNKER C OIL	9,200	LITER	37	0.8222	0.00402	76.72 Liter	2,838.64	80.02
COAL 0-50 MM	5,600	KG	4.5	0.1000	0.00080	126.05 Kg	567.23	

Bunker price: Zamboanga is Php40, Davao is 40, Gensan is 39

THAILAND Convertion Rate : US\$1.00=Baht 33.00 as of Aug 01, 2008

COST OF STEAM PER TON								
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	PRICE	COST	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(BAHT)	US \$	PER/KCAL	PER TON/HR	BAHT/ton STEAM	vs COAL
DIESEL FUEL	9,063	LITER	35	1.0606	0.00386	77.88 Liter	2,726	87.05
BUNKER C OIL	9,200	LITER	18	0.5455	0.00196	76.72 Liter	1,381	74.44
COAL 0-50 MM	5,600	KG	2.8	0.0848	0.00050	126.05 Kg	353	

INDONESIA Conversion Rate : US\$1.00=Rp 9000 as of Aug 01, 2008

COST OF STEAM PER TON								
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	PRICE	COST	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(RP)	US \$	RP/KCAL	PER TON/HR	RP./ton STEAM	vs COAL
INDUSTRIAL Diesel	9,063	LITER	10700	1.1889	1.1806	77.88 Liter	833,316	89.71
Medium Furnace Oil	9,200	LITER	7600	0.8444	0.8261	76.72 Liter	583,072	85.30
COAL 0-50 MM	6,200	KG	1100	0.1222	0.1774	113.85 Kg	125,235	31.56
COAL 0-50 MM	5,600	KG	680	0.0756	0.1214	126.05 Kg	85,714	

Price: ex-Cirebon Coal Terminal

Conversion Rate : US\$1.00=Rm 3.20 as of Aug 01, 2008 MALAYSIA

COST OF STEAM PER TON								
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	PRICE	COST (Rm)	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(RM)	US \$	Per Kcal	PER TON/HR	Rm./TON STEAM	vs COAL
Light Fuel Oil	9,063	LITER	2.8	0.87500	0.00031	77.88 Liter	218.06	83.81
MFO (180 grade)	9,200	LITER	2.45	0.76563	0.00027	76.72 Liter	187.96	81.22
Natural GAS	9,000	M3	0.84	0.26250	0.00009	75 m3	63.00	43.98
INDO-COAL 0-50MM	5,600	KG	0.28	0.08750	0.00005	126.05 Kg	35.29	

Price ex-terminal Batu Pahat-Rm. 0.25/kg, For Northern areas - Rm. 0.30/kg. ex-terminal Lumut

VIETNAM

Conversion Rate : US\$1.00=Dong 15600 as of Aug 01, 2008

COST OF STEAM PER TON								
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	PRICE	COST	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(DONG)	US \$	Per Kcal	PER TON/HR	DONG/ton STEAM	vs COAL
DIESEL FUEL	9,063	LITER	17,000	1.08974	1.87576	77.88 Liter	1,323,960	84.06
BUNKER C OIL	9,200	LITER	13,500	0.86538	1.46739	76.72 Liter	1,035,720	79.62
VIETNAM COAL 5A	6,000	KG	1,800	0.11538	0.30000	117.25 kg	211,050	
INDONESIAN COAL	5,600	KG	1,700	0.10897	0.30357	125.63kg	213,571	

Price: ex-terminal at Ho Chi Minh City

TAIWAN R.O.C Convertion Rate : US\$1.00=NT\$30.00 as of Aug.. 01, 2008

COST OF STEAM PER TON								
KIND OF FUEL	HEAT VALUE	UNIT	PRICE	5% Tax	Total	CONSUMPTION	COST OF STEAM	SAVINGS %
	KCAL		(NT\$)	(NT\$)	(NT\$)	PER TON/HR	(NT\$)/ton STEAM	vs COAL
DIESEL FUEL	9,063	LITER	30.00	1.50	31.50	77.89 Liter	2,336.70	79.50
BUNKER C OIL	9,200	LITER	19.00	0.95	19.95	76.72 Liter	1,457.68	67.14
COAL 5600 KCAL	5,600	KG	3.80	0.19	3.99	126.05 Kg	478.99	

World Oil Price as of July 8, 2008

http://futures.tradingcharts.com/chart/CO/W

NHK NEWS (JUIY 8, 2008)

According to the famous economist of Japan, oil price may even go up to **US\$200** per barrel by the end of this year 2008. He analyses as follows:

Oil price has rallied strongly last week after the International Energy Agency raised its 2008 forecast for oil demand by 2.5% percent to 88.2 million barrels a day. However, for the past many years OPEC is not responding to the world request to increase its output drastically for the reason that;

1) Due to the collapse of value of US Dollar currency toward most of world's currency, income of OPEC had dropped substantially in US Dollar.

2) Despite of high oil price at present,
World economy never shows
slowdown, instead, economy of CHINA
and EU countries are going up fast.
Therefore, there is no need of
lowering the oil price to stabilize the
world economy at this moment

ALL KIND OF COAL

Only Fluidized Bed can mix various biomass fuels

Corn Cob

b Coc

Rice husk

e husk

bamboo

Palm kernel

Wood bark

RDF/RPF

SCREEN REJECT

City waste

Watertreatment waste

FLUIDIZED BED SYSTEM

USE COAL 0 - 10 mm SIZE
 ASH CONTENT FLEXIBLE

FLUDIZED BED SYSTEM:

Indonesian Semi-Bituminus coal, when fired with the conventional furnace, some problem is expected as a result of melting ash. In order to solve such problems, we introduce "Fluidized Bed System".

which uses fluidizing "Silica Sand" in order to catch the flying away unburned gas, to give enough time for complete combustion, to distribute heat evenly throughout the combustion area, to enable installation of water tube assembly emerged inside the sand bed to transfer heat from the fluidizing fire to lower the sand bed temperature below 1,000 oC, and to allow injection of Limestone to react with the harmful SO2 gas.

Left picture shows the arrangement of submerged water tube installed inside the sand bed. Because of this tube, bed temperature can maintain at below 1000 oC below the ash melting point. Only the Fluidized Bed System can do this for the total solution of melting ash problem which has been giving mile-stone problem to other combustion method. Moreover, the heat transfer efficiency of the submerged tubes is 5-6 times higher than the co-efficient of heat transfer of the conventional boiler convection tubes. Almost 30% of the total steam output can be generated from this submerged tube banks because of this.

Air-distributor: Left picture is the view of multiple air-nozzles installed at the bottom of the FBC furnace below the sand bed. If asked what is the disadvantage of Fluideized Bed after hearing so many advantages over the other systems, my answer is that FBC need big power to lift up silica sand with the high pressure air of about 1000 mmH2O. Motor for FDF may be 2 times bigger than the motor used for the other system. It is, however, such disadvantages can easily be compensated by higher combustion efficiency that will give more benefit to the user. A big hole shown in the left picture is the sand discharge valve where some big pieces of sludges will also fall to be discharged periodically.

FBC fire/ looks like lava of volcano: Inside of lava coming from volcano, nothing remains unburned. Fluidizing fire is the same status. No unburned carbon. For sulfur problem, CaCO3 may be injected for reaction with SO2 to become CaSO4 which is unharmful. Such injection is not possible for other systems. Nox problem is also not applicable for Fluidized Bed's low temperature combustion below 1000 oC. This is why most of the latest power plant in the leading countries adopt Fluidized Bed for it's advantage in pollution control as environmental protection is the main issue to be solved in every big coal firing plant.

PRINCIPLE OF FLUIDIZATION

FLUIDIZED BED UNIT

When a bed of fine particles, for example sand, is subjected to an upward stream of air, the particles become suspended as the airflow reaches a certain velocity. This condition is referred to as the minimum fluidizing velocity and it varies according to the particle size and the depth of the bed. When the bed is fluidized it resembles a boiling liquid. Such a turbulent mass of solid particles is named a fluidized bed. Coal can be fed into the bed and as it burns it resembles molten lava. If the gas velocity becomes too high, then the particles are entrained in the gas stream and are lost. A fluidized bed behaves like a liquid, so both the bed level and temperature can be easily controlled.

Coal fuel enters the furnace slightly above the fluid bed splash zone where the rising stream of air and combustion gases burst from the sand bed. The vigorous action of the bed causes the fuel to rapidly mix and be quickly raised on temperature to its igniting point. Solid fuel particles mixing with the rising air stream are jostled by the hot bed material (sand, ash & fuel) causing rapid release of surface moisture and volatile matter from within the fuel.

The relatively large mass of moving bed material continually exposes new surfaces of the fuel particles for combustion, sustaining the rapid combustion within the bed. The rapid combustion enables very good load response to be maintained. (Closely approaches that of oil fuel)

WHEN the fluidized bed design is compared with conventional grate systems the following specific capabilities of the former enable a practical unattended control procedure (automatic controls) to be devised and implemented;

Combustion temperatures are significantly lower and thus much safer conditions are continually maintained (well under 1000 oC)

The nature of a fluid bed ensures that mal-distribution is not likely to occur. Fuel migration through the bed is fast and even. Air distribution is insured by the designed configuration and location of the air nozzles.

The bed combustion can be stopped instantly by turning off the air supply to the bed. This action results in the bed slumping, thereby smothering combustion. The bed is inherently safe because it contains only 3-5% combustible material as a maximum. This is evenly distributed throughout the inert bed material. When slumped, the bed is safe and permits an easy restart even after several hours simply by re-introducing the airflow into the bed. This is possible because of the substantial quantity of entrained heat in the bed material.

The furnace is located atop the air distribution plenum. It has an overall freeboard height of about 5 meter. At its base, and assembly of In-bed tubes are positioned so that at maximum steam output they are fully immersed in the expanded fluidized bed. As the fluidizing air supply is decreased, the expanded bed depth is reduced and the inbed tubes are progressively uncovered such that at all outputs approximately 50% of the heat release by combustion is transferred to the in-bed tubes when burning coal fuel. This allows a turndown of at least 3:1 at near constant excess air with the entire bed in operation. Co-efficiency of heat transfer

of the in-bed tubes immersed in the sand bed is 5-6 times higher than that of the conventional convection tube bank area. If design of boiler requires 30 m2 for convection area to generate 1000 Kg of steam per hour, we can safely take 1/6 of it or 5 m2 to generate 1000 Kg of steam from the immersed in-bed tube area.

The fluidizing air enters through air distributors mounted on a flat base plate. The bed material is silica sand having a mean size of 0.9 mm (#3). Bed depth is about 400 mm.

Start-up of the bed is achieved by the firing of an above bed distillate coal layer, which is lit by small quantity of oil at the very start. Start-up is normally achieved in 45 minutes from cold status. Hot starts normally are achieved in less than 10 minutes, 6 minutes of which is needed for purging to ensure there are no pockets of ignitable gas in the boiler passes. If the bed temperature is above 600 oC no oil fuel is needed to re-start the bed. Usually bed can maintain enough heat or above 600 oC for 1-2 hours.

The average bed temperature varies between 950 oC at full load to 750 oC at minimum load. In fluidised bed operation bed temperature is monitored and is in fact a better indication of combustion condition than a flame scanner used for oil burner.

The major proportion of the fuel is burnt within the bed, with the remainder burning in the free board zone or disengaging space above the bed. With the injection of overfire 2^{nd} air into the free board zone, disengaging space temperature will rise higher than the temperature of the bed. The final gas temperature leaving the furnace will be similar to the bed temperature as the elevation in temperature due to free board combustion is partially offset by the heat transfer to the uncovered portion of in-bed tubes and cooling effect of the fresh air injection.

Fine coal is stored on the ground and normally flat conveyor system transport coal from the in-ground hopper to the silo mounted at the front of the boiler. The coal runs from the storage silo by gravity to the screw conveyor with variable speed gear motor, then the coal enters the furnace through an air swept spout.

SOOTBLOWERS

Soot blowers are not necessary to be installed as the combustion temperature of the fluidized bed is controlled at well below the ash fusion temperature and fly-ash entrained in the gases entering the convection tube banks are dry and non-adhering and possess a selfcleaning action.

Coarse ash which is not elutriated from the bed must be removed. This material is removed continuously by means of circulating sand bed. We call this system as CIRCULATING BED. Air nozzles are screwed in to the multiple air distribution pipes instead of base plate which was used before. Because of this air distribution pipes, coarse ash can fall below the pipe level travelling downward in between the pipes and those materials will be discharged from the rotary valve below together with the silica sand onto the vibrating screen which will segregate those coarse ash and other foreign materials from the pure silica sand. Then the pure silica sand will be returned to the furnace

BED TEMPERATURE

START-UP

FREE BOARD ZONE/ OVERFIRE 2ND AIR

COAL FEEDING SYSTEM

COARSE ASH REMOVAL circulating sand bed

CONTROL

through the sand returning pipe by blower.

a) Fluidized Bed Temperature Control

The bed temperature is controlled between approximately 750-950 oC by varying the speed of the coal screw feeder in response to a signal from the steam pressure and the bed temperature (2 factors)

b) Free Board Draught Control

The draught in the free board is controlled at approximately –50 Pa by adjusting the induced draught fan damper located after the multi-cyclone dust collector.

c) Fluidized Bed Load Control

Under normal operating conditions, a manual set point forms the load signal. This signal is used to adjust the fluidizing fan damper. As the amount of air is varied to the furnace, the coal feed rate will be regulated to maintain the bed temperature. The fluidizing fan damper control is overiden if the flow measurement indicates a fluidizing velocity of less than 1m/s.

d) Bed Level Control

Bed pressure is used to control the bed depth between an effective static height of 120 mm to 180 mm. As the bed pressure reaches the lower limit, the bed material is introduced to the bed by starting the bed **One of the material freed state advantages** of the fluidized bed boiler is the fact that the temperature spread in the furnace is small due to solid mobility in the fluidized state. This feature is commonly exploited for sulphur capture using limestone;

(FBC, most environmentally friendly system)

ACID GAS EMISSION

CaCO3 CaO + CO2

Followed by

2CaO + 2SO2 + O2 ---- 2CaSO4

The thermodynamic stability of the sulphur capture product declines sharply as temperature is increased above 900 oC and for this reason, bed temperature is maintained between 800 - 900 oC. Ca/S molar feed ratio of around 2 - 2.5 are typically used and sulphur capture efficiency for this type of system is usually in the range 70-90 percent, depending on limestone reactivity. Soft, dolomitic limestones are generally the most effective for this service.

ASH / CARBON / SAND / LIMESTONE

In an overall sense, FBC acid gas emissions are dramatically lower than those from other combustion system such as chain grate stoker, underfeed stoker, pulverized coal spreader etc.,(without external flue gas treatment). Emission limits of (typically) 200-300 ppm for Sox and 100-150 ppm for Nox can usually be met without resorting to post treatment of flue gas.

The carbon content of the bed is typically around 2-3 percent (as coal being 5% of the total bed material) and the balance of the bed meterial can be ash, sulphated limestone or sand. The preferred mode of operation is one in which ash and limestone make up the bed. In some instances limestone is not needed and ash content is too low and friable enough to break down to fine particle and be carried out of the bed. This case is specially with the "ADARO COAL" of Kalimantan, Indonesia, which contains only 1 % ash and 0.1 % sulphur. In such cases it is necessary to add a material such as sand to the bed to maintain a suitable inventory in the system. The performance of a particular coal in relation to bed ash formation can be highly significant from a fuel selection point of view – a boiler operator may not wish to add sand/limestone purely for maintenance of a suitable bed. In such cases the supplier of a coal which does not have good bed-forming properties may need to "spike" the fuel with bed-forming agents.

Ash softening temperature is an important parameter. The fluidized bed must operate in a "Dry" condition since any stickiness has the potential to cause uncontrolled agglomeration and ultimately defluidization. Relatively few coals can produce sufficient stickiness below about 900 oC to upset fluidization, though coals which contain appreciable amounts of **chlorine** and/or alkali metals such as **Na** and **K** are known to give problems.

ONLY FLUIDIZED BED SYSTEM CAN OPERATE JUST LIKE OIL/GAS BURNER (Turn-down ratio 1/4)

Generation of heat can be adjusted freely up to the turn-down ratio of about 1/4 by controlling coal fuel feeding and forced fan damper openig to the minimum fluidizing velocity. At the minimum fluidizing velocity, sand bed is still fluidizing and continue to generate steam at 1/ 4 capacity. Between this range of evaporation, Fluidized Bed can react most likely to the Oil/Gas burner among any conventional coal firing system such as chain grate and/or underfeed stoker.

NO LOSS OF REMAINING FUEL WHEN SHUT DOWN YOUR BOILER

Rough & coarse ash from Chain Grate

Not like with the other systems, you do not waste any remaining coal fuel when you want to stop the boiler. Remaining coal still inside the sand bed when you turn off the air supply to the bed shall have no more Oxygen supply and trapped inside the hot sand without wasting carbon for no use.

For any other coal fire system like chain grate, all coal fuel already stay on top of the moving chain grate shall have to finish buring even the boiler stop operating and you do not want steam any more. Those loss will count greatly in a long time when comparing Fluidized Bed and Chain Grate.

All ash will go out of Fluidizing Sand bed in a very dry condition under low temperature of about 900 oC. This condition of ash will never make problems of clinkering and never stick on the surface of boiler tubes. Therefore, soot blower is not needed for Fluidized Bed as mentioned previously. Only fine and dry ash are collected by the multicyclone system aftr the boiler and to be discharged through the rotary valve. Since the quality of ash coming out from Fluidized Bed is very fine and equal in its size, ash from the Fluidized Bed Boiler will find commercial value for fertilizer, mixing agent for cement moulded product, construction material, filler for road making etc. Ash from other coal firing system such as chain grate are very rough/coarse due to its high temperature above ash melting point, and can not find its commercial value.

NO CLINKER, NO ASH FOULING/SLUGGING

Fine & dry ash from Fluidized Bed

FBC AIR DISTRIBUTOR

Low temperature combustion 980 o C

FBC tubes which is emerged inside the dancing hot sand will have 5-6 times better co-efficient of heat transfer, thus enable to maintain the temperature of FBC combustion zone below 1000 o C which is below the ash melting point of most of the biomass and coal fuels.

And NOx will not be formed under this low temperature.

Circulating sand Bed (@patented)

Residue from coal

Distribution air Pipes

This circulating sand bed system has been developed in order to burn fuels with high content of impurity. With this mechanism, impurity in the fuel will be screened by the vibrator screen conticuouly while boiler is in o p e r a t i o n.

Foreign materials and stones are separated by this screen vibrator

Vibrating screen separator

Boiler accessories

Coal Feeder screw

Coal Storage and PLC Control room

Coal Feeding Flat Conveyor /Coal Crusher and Lifter

Coal dust suction system

Coal handling/crusher system

FOR SHARP INCLINATION

COMPARISON BETWEEN FLUIDIZED BED AND CHAIN STOKER

		Hamada Fluidized Bed	Travelling Chaingrate
		Combustion	
u	Coal Size	0~10 mm	15 ~50 mm
atio	Coal Price	Cheaper (± 23 %)	More expensive
ıl Specific	Ash Content	No Requirement, can use adaro enviro coal with 1 % ash content	5 ~ 15 % Chain Grate need at least 5% ash content to protect chain from over heating
Coa	Volatile	No Requirement	20 ~ 30 %
	Furnace Temperature	Below 1000 °C	1300 - 1400°C
	SOx Problem ?	With Inject CaCO3 can use coal with high sulfur content	Must avoid using Coal with high sulfur content
	NO	No, because low	Yes, Because high
	NOx Problem ?	temperature at the furnace	temperature at the furnace
Combustion System	Ash Melting Problem ?	No, Because the combustion temperature below ash melting point.	Yes, Because the combustion temperature is above coal ash melting point (Indonesian coal is young coal with 1100° ~ 1200° C melting ash temperature). Melting ash will stick to the chain and Boiler tube, difficult to clean and oiler efficiency become low.
	Can Mixed with other Solid	Yes, Because fuel that still can be burn will remain inside silica sand	No, because chain grate need fuel with same size and condition
	Combustion Efficiency	Higher, because fuel can stay long inside the silica sand bed until totally finish combustion	Lower, because bigger coal can not finish burning up to the rear of chain grate and will fall down to ash disposal and fine coal will fly and carried away by the induced draft without burning

25-30% difference in coal consumption Ash with many unburnt coal Perfectly burnt gray color

Ash with many unburnt coa from chain grate boiler

Perfectly burnt gray color ash from Fluidized Bed Boiler

There are many cheap China Chain Grate Boilers are operating in many countries, simply because the owner decided to buy the cheap China chain grate for its low investment. Bur do you know that such inferior design can not burn the coal 100%. Look at the above pictures!!

Taiwan YFY Chingshui Plant (DF16-25)

Indonesia Grandtex Bandung

LOC Lautan Otsuka Chemical (Merak)

Gudang Garam Factory

TEIJIN Indonesia Fiber Corporation (TIFICO) DF22 x 3 units=66 ton/H

PT. BATAMTEX (Semarang)

DF Installation

Multi Cyclon dust collector (cast iron) and Venturi wet scrubber

Bag filter material Specification Bagfilter material Code: TFM04-5(B) coating Weight: 800g/m2 2 3 Thickness: 1.8-2.0mm Air permeability: ≤60dm3/m2/s 4 Warp tensile force: 1400N/5×20cm 5 Weft tensile force: 1600N/5×20cm 6 7 Working temperature: 200-250°C, Max temperature 280℃ Wind speed: 1.0-1.2m/min 8 Material: Glass fiber base cloth/P84+ 9 glass fiber Treatment: PTFE treatment, coating 10 11 Service life: 2 years 12 Application: coal fired boiler

Bag Filter

Special Filter material with coating: Picture (a) is with coating which can totally stop yhr smoke to get through (b) is without coating smoke can go through.

TFM04-5(B) P84/PTFE+Fiber Glass Coating

Ash bin pump and air conveyor/steel ash silo

w tank R&I diagram (ash pipe)DN50 blow tan Ep ash silo diagram control cable ash pipe -N- check valve Air pipe safety valve oneumatic feed val sure switch level-sensing device assa ansitication pl STAR SHAPED FEEDER BULK-LOUDER pipe)DN50 E. (Air pipe) DN50 air supply (Air pipe) DN25 08.03.03 OLEM INTERNATIONAL ۲ BOILER ash-transfer PT HAMADA DAYATEKNINDO

This arrangement is a standard set-up of single unit of ash bin pump at the bottom of Bag Filter or EP connected to Steel made ash silo for automatic discharge of ash. Ash inside the silo has a bag filter to release excess air and keeps ash all the time fluidizing to maintain fluidity of ash.

Ash bin pump and air conveyor/concrete ash silo

Concrete silo is used for this set-up. Due to the Sulfur content of coal ash, concrete silo is recommended rather than steel silo for longer life and easy maintenance. Most of China's power plant uses concrete silo because of this reason.

Picture above is ash silo for 35 ton CFBC boiler.

Auto ash discharge to truck

Ash Bin Pump Automatic system

Concrete ash silo for DF25 model

OPTION II: Desulfurization at the Venturi Scrubber by Mixing NaOH

Use the Na solution :

 $2NaOH + SO_2 = Na_2SO_3 + H_2O$

 $Na_2SO_3 + SO_2 + H_2O = 2NaHSO_3$

 $2NaSO_3 + O_2 = 2NaSO_4$

For DF Series, Most of the case, we use Multi cyclone and venturi wet scrubber only, without employment of expensive DeSOx tower. Specially if you use Indonesian coal of below 1% sulfur content, SO2 level is lower than the government set value. You have two(2) Options to remove SO2 acording to the content. 1st OPTION is to inject CaCO3 into the Furnace. 2nd OPTION is NaOH solution to be injected to the venturi water scrubber for reaction as indicated in this paper. In anyway, FBC boiler does not require expensive DeSOx tower at the exhaust gas area. This is a remarkable advantage of FBC system.

How to reduce NOx

* Combustion Modifications

Reducing the flame temperature at the peak combustion area will mean reduction of NOx formation. This is the most effective method to control NOx and Fluidized Bed Combustion which maintains low temperature (**850-950 oC**) combusiton area is proven to be the best method to combat NOx problem.

NOx solution

* Flue gas treatment

Flue gas treatment to remove NOx is useful in cases in which higher removal efficiencies are required than can be achieved with combustion control. Selective Catalytic Reduction (SCR) is the most advanced and effective method for reducing NOx emmissions. In selective catalytic reduction, the NOx species are reduced by NH3, ultimately to N2 gas. The predominant reactions are; 4NO + 4NH3 + O2 - 4N2 + 6H2O

2NO2 + 4NH3 + O2 -- 3N2 + 6H2O

Ammonia is vaporized and injected down steam from the boiler feed water preheater as shown in the figure below.

工程竣工驗收證書

正隆股份有限公司 2×DF22-1.6-AⅡ 鍋爐房專案___工程

竣工驗收日期: 2007 年 12月 31日

工程名稱 正隆股份有限公司-AⅡ鍋爐房專案 正隆股份有限公司竹北廠 工程地點 2 台 DF22-1.6 鍋爐 建 設 規 模 2007年 4月 15日 竣工日期 2007年 12月 31日 開工日期 工程概況: 本工程已按合同的約定和技術要求,完成了系統供貨、安裝、調試;鍋爐經 過性能滿載測試,並經過滿載72小時運行,整個系統符合設計。鍋爐性能測試: 鍋爐效率、帶負載能力滿足合同的約定的各項內容;空汙測試:NOx、Sox、煙 氯粒狀物含量,满足合同的約定的各項內容。 w上www.a.R. 人本工程尚有部份竣工事請依2007.12.19會議記錄內容儘重排定時間 竣工驗收意見: 2.1°财施2009.17.12测效率89.96%合格 2°财施2009.12.29次1效率85.9%路 不多济极湖, DENOX=189,719M高格, DESOX 136,319M含格、超水物101994 后格. 脱硫这年(AT. Cass) 液1 77.1%末達 85%以上不容格

參加工程建設的單位代表簽名

正隆股份有限公司:	香港歲昌實業有限公司:
V来天55% 2008. 07. 04.	喜清·清·言 2008、01.0化

台湾正隆製紙竹北廠 検査検収証書 Taiwan Chengloong paper test report

Test report:

CHENGLOONG PAPERMILL

(CHUPEI PLANT) TAIWAN

<Translation>

December 17, 2007

- Boiler efficiency is tested : #1 Boiler= 87.96%(passed) #2 Boiler= 85.29%(passed)

- NOx : 189.7 ppm (passed)
- SOx : 136.3 ppm (passed)
- Particle : 10 ppm (passed)

Thailand Hiangseng Papermill - waste to energy project

Before plastic wastes are thrown outside the factory by hired truck ----Now turn to precious ENERGY!!!!!!!!!

(CLEANER REJECT)

Rag Rope

=20T/day with 10% wire content 9000Kcal/Kg dried basis with 30% water content

Pulper Reject =30 ton/day 9000Kcal/Kgdried basis with 30% water content

Shaftless Screw Conveyor System for Citywaste firing

Sludge Coal Fired FBC Boiler

35噸/時洗煤泥流化床鍋爐

WASTE SLUDGE COAL FROM WASHING PROCESS

- * 0-0.5 mm
- * 20-40% ASH
- * 3500-4000 Kcal/Kg
- * Mixed with sand

5% of washed coal will go to waste settling pond in eveery coal mining.

60% wet sludge coal (by-product of coal washing process of all coal mining) can not just be burnt in any other conventional method. This is the special way developed by HAMADA BOILER

This technology is one of the most remarkable achievement of Hamada Boiler in cooperation with the Zhejiang University. Almost 60% water content coal sludge will be passing the mud pump to go to the top of the 35 meter high CFBC furnace where the specially designed extrudeer is located. When the sludge is extruded, it will fall automatically after reaching certain length due to its own gravity. Then while dropping 35 meter to the FBC bed, its surface will dry and solidified and Accumulated steam inside will build up pressure and will burst into poieces just before reaching the bottom to fluidize.

SUPERHEATED 450 oC

FUEL

Model NG-35-39/450

Citywaste Power Plant

RAW CITY WASTE

PULVERIZED COAL BURNER for AMP (Asphalt Mixer Plant)

Demonsgtration unit of coal burner and combuster which was demonstrated to many AMP (asphalt mixer plant) operator of Indonesia

This picture shows most of the AMP in the world are still using expensive oil as fuel. Do you know you can save as much as 70% if you change the fuel to coal? It's unbelievable, but it's true

This picture shows the AMP plant operating already with coal fuel using Hamada coal burner system and saving as much as 70%.

This system is not only for AMP, but we have already successfully applied the same system to Brick dryer, tile dryer, Kaolin industries, any kinbd of rocks and pwder drying rotary kiln etc. Please contact us for details.

PULVERIZED COAL BURNER for COALMAC BOILER

Conversion : Many customers may wish to convert their ixinsting fire tube boiler with this system, but the pressure vessel has a limitation which is possibly converted. Pictues below are all possible for conversion.

If smoke tube type, dry-back is easy to convert. Wet-back need to make the stomach open for ash disposal which need a big operation This is a very unique application of Pulverized coal burner to the fire tube boiler shell (Dry-Back Type) to conver the oil fired boiler to coal fired at the lower investment for smnall capacity of 5 – 10 ton with low pressure4 of below 13 bar pressure

Above picture is showing the coal pulverizer to make coal powder to 0.4 mm size from delivered fine coal of 10 mm. Left tp picture is the rotating system for the rotating furnace/combustor to enable complete combustion and prevent accumulation of ash

Left middle picture is the specially designed coal burner distributor to create swirling effect to the spray of coal powder into the combustor.

Left below is the removable design of the coal burner from the combustor

Paperland of the Philippines

(convertion Of existing water tube boielr)

Hamada Convertion Kit

Rotary Furnace for AMP (Asphalt Mixing Plant)

Pulverized Coal Burner Specification

	MODEL	CB3-34RF	CB3-56RF	CB3-78RF	CB3-9010RF	CB3-1112RF
		(Single Pulverizer)	(Single Pulverizer)	(Single Pulverizer)	(Double Pulverizer)	(Double Pulverizer)
1	MAX. CAPACITY	30-40 tons/H	50-60 tons/H	70-80 tons/H	90-100 tons/H	110-120 tons/H
2	MAX. THERMAL HEAT	4,300,000 Kcal/H	6,500,000 Kcal/H	8,600,000 Kcal/H	10,800,000 Kcal/H	13,000,000 Kcal/H
3	PULVERIZER CAPACITY	600 - 900 kgs/H	1,000 - 1200 kgs/H	1,400 - 1600 kgs/H	1,800 - 2,000 kgs/H	2,200 - 2400 kgs/H
4	COAL CONSUMPTION	18 - 25 kgs/ton				
5	FURNACE TYPE	Rotary w/ Louver Airbox				
6	PULVERIZER MOTOR	30 KW	37 KW	45 KW	30 KW X 2	37 KW X 2
7	COAL CRUSHER MOTOR	7.5 KW	7.5 KW	11 KW	11 KW	11 KW
8	FORCED FAN MOTOR	7.5 KW	11 KW	15 KW	15 KW	15 KW
9	DRIVE GEARMOTOR	1.5 KW	1.5 KW	2.2 KW	2.2 KW	2.2 KW
10	CONVEYOR MOTOR	2.2 KW				
11	COAL LIFTER MOTOR	2.2 KW				
12	COAL FEEDER MOTOR	0.75	0.75 KW	0.75 KW	0.75 KW	0.75 KW
13	START-UP BURNER	0.37 KW				

SCOPE OF SUPPLY:

- 1 ROTARY FURNACE COMPLETE W/ REFRACTORY WORKS, WHEELED ROLLERS, CHAIN-DRIVE BY GEARMOTOR.
- 2 COMBUSTION AIRBOX, LOUVER-TYPE, ADJUSTABLE WHEEL, STRUCTURE & FORCED DRAFT FAN
- 3 MAIN PULVERIZER WITH MOTOR, SCREW FEEDER WITH GEARMOTOR, BASE PLATE, ETC.
- 4 COAL CRUSHER WITH MOTOR WITH DISCHARGE SCREW, COMPLETE WITH BASE FRAME & STRUCTURE
- 5 ELEVATED COAL SILO, COMPLETE WITH STRUCTURE & CLIMBING LADDER
- 6 COAL LIFTER, 300 KGS/LIFT, DRIVEN BY GEAR MOTOR WITH DOUBLE WINCH DRUM
- 7 COAL CONVEYOR WITH RECEIVING HOPPER, DRIVEN BY GEARMOTOR
- 8 START-UP BURNER ASSEMBLY
- 9 CONTROL PANEL WITH CONTROLLER
- 10 THERMOCOUPLE SENSOR & CABLING
- 11 SITE ELECTRICAL WIRES & CABLES
- 12 INCLUDING INSTALLATION & COMMISSIONING

NOTE: ABOVE PRICES DOES NOT INCLUDE FOUNDATION AND ALL CIVIL WORKS

THERMAL OIL HEATE FLUIDIZED BED

Multi tubular type heat exchanger vessel, designed for coal combustion, which is more efficient than the coil type

6,000,000 Kcal/H installed at PT. PURNAMA TEXTILE at Majalaya, Bandung

Oil Circulation Pump

Air Pre-heater unit

Model RC Series

WOODWASTE / SAWDUST-FIRED BOILER

2 to 5 TON/H CAPACITY 13 KG/CM2 PRESSURE

Firetube/watertube combination

MODEL N	AME		RC2000	RC5000
GRATING	SYSTEM	ŀ	IXED GRAT	E
STEAM QU	JALITY		saturated	saturated
Steam Eva	poration	kg/hr	2000	5000
Working P	ressure	kg/cm2	13	13
Feed Wate	er Temp.	deg.C	25	25
Furnace V	/olume	m3	6.84	13.68
Furnace H	leat Release	kcal/m3/hr	225,000	225,000
Grate Are	a	m2	1.63	3.27
Heating	Radiation	m2	20	28
Surface	Convection	m2	60	150
	Economizer	m2	20	40
	Total H. Sur.	m2	100	188
Exhaust G	as Temp.	deg.C	180	180
Steam	Diameter	mm	1500	1832
Shell	Thickness	mm	12	16
	Lenght	mm	3200	4436
Header:	Diameter	mm 3200 mm 159		159
	Thickness	mm	6	6
Type of Fu	el		wood	wood
Induced	Model		GY3-1	GY6-1
Draft Fan	Capacity	m3/hr	9112	16000
	Static Pressure	e mmWG	196	313-338
	Electric Motor	Kw	11	30
Forced	Model			4-72-11-4.5A
Draft Fan	Capacity	m3/hr	4200	8000
	Static Pressure	e mmWG	165	258
	Electric Motor	Kw	5.5	7.5 kw
Feed	Brand		1 1/2GC 5x6	1 1/2GC-5x7
Water	Capacity	m3/hr	4	6
Pump	Head	m	138	161
	Electric Motor	Kw	7.5	7.5
Main Stear	m Outlet		DN100	DN150

Specially designed for sawdust suspension firing

Below the smoke tube shell, large combustion furnace is placed to allow free movement of combustion gas for complete combustion. Radiation heat is absorbed by the waterwall on the both side. Multi-air nozzles are installed al around the furnace to create turbulance for mixing enough O2.

Indonesia TORAY power plant by Hamada Boiler 35T/H x 2 and 75 T/H CFBC x 2 (30 MW)

TOTAL ENGINEERING OF ENVIRONMENTAL PROTECTION (PARTICLE, SOX, NOX, DIOXIN, HCL)

Heavy duty chain grate Boiler

3 x SHL20-25 sidee by side at PT Kertas Basuki Rahmat

SHL35 power boiler at PT ITS(Toray) of Indonesia

Model D-10 10ton chain grate (Indonesia)

Mr. K. Hamada, a chairman of Hamada Boiler started to manufacturer the internal chain stoker boiler in China in 1999. This is the first unit exported to indonesia.

This unit has 7 meter long chain grate for 10 ton boiler which is almost double the length of competing brand from UK and South Africa at that time.

Originally the Chain stoker was too short for the bituminus coal of China

After improvement was made to extend the length of Chain Stoker to the end of the boiler shell

This picture was taken at one of the European boiler operating in Malaysia. Due to the short chain grate, there are a lot of unburn coal mixed in the ash disposal at the center of the boiler belly.

When high pressure is required for the short chain grate, another big problem is observed. That is tremendous increase of unburnt coal. One tire factory who used this short chain gratre boiler was forced to fire his oil boiler just to back up to maintain the pressure. Short chain grate is not fitted to the Indonesian semi bituminus coal and fine coals. Left foto shows surprising unburnt coal.

Left picture shows foundation work done by the customer while waiting for the imported boiler to arrive.

Picture below is power box and instrument box of COALMAC Boiler using Honeywell UDC Microprocessor. It is fullky automatic.

Hamada Boiler Hangzhou China Factory is in mass production of this COALMAC Boiler to enable the fast delivery when coal boiler demand is so high at this time of oil crisis

EFB (empty bunch) firing

Price of rice husk (deliver within 20 KM)
1) Philippine Php 1.20/Kg (US\$0.0272/Kg)
2) Vietnam Dong 500/Kg (US\$0.02777/Kg)

Rice husk delivery by river (Vietnam)

 \mathbf{n}

Specially designed rice husk Burner

With superheated air

This burner can be used for other biomass fuel such as EFB short fiber

A	Calofic-CAI LAN-CAN THO (Vietnam) – Rice Husk Boiler										
F	-	TANTAL	C) F	ue Gas Analysis	5	The		FALL I			
No	Data	Rice Husk	Steam Flow	Rice Husk Consumption	1	Flue	Gas-Hamada B	oiler Guarantee			
	Date	Consumption (Kg)	(Ton)	per-Ton Steam (Kg/Ton-Steam)		AND	VIETNAM GOVE	ERNMENT RULE			
1	2008-02-28	34922.0	137.8	253.4							
2	2008-02-29	39441.0	153.0	257.8							
3	2008-03-01	37795.0	152.0	248.7	Q_						
4	2008-03-02	34659.0	156.8	221.0		NO.	ITEM	VALUE			
5	2008-03-03	6259.0	79.1	79.1	2	1	Particle	350 mg/m ³			
6	2008-03-04	35837.0	154.9	231.4	÷.						
7	2008-03-05	36600.0	149.2	245.3		2	NO ₂	400 mg/m3			
8	2008-03-06	36614.0	178.0	205.7	-	3	\$0	500 mg/m3			
9	2008-03-07	37571.0	163.4	229.9	8	5	30 ₂	JUU mg/ms			
10	2008-03-08	38982.0	165.3	235.8				7			
11	2008-03-09	38940.0	162.0	240.4	1	(A MAY)	CHARLEN S				
12	2008-03-10	38803.0	158.7	244.6	Å						
13	2008-03-11	39006.0	165.3	236.0	3						
14	2008-03-12	38752.0	173.9	222.9		Flue	Gas-Hamada B	oiler Guarantee			
15	2008-03-13	38877	171.95	226.1	T		ACTUAL TEST	RECORD			
16	2008-03-14	39204	170	230.6							
	Tra	SIME S	CF1	NUM DE							
Th	is is the	rice husk consum	ntion recor	d and exhaust flue		NO.	ITEM	VALUE			
ga	s emissio	on test				1	Particle	92.89 mg/m ³			
Ric	e husk c	onsumption avera	age : 240 K	g/ton steam		2	NO ₂	24.664 mg/m3			
Ра	Particle, Sox and NOx are all within the Vietnam government						SO ₂	34.744 mg/m3			
set	t regulati	ion as shown in th	ne test repo	ort.	1						

NY TY AN

NE SI

Par .

Heat Pipe Waste Heat Recovery Boiler For waste gas of Diesel Generator

MODEL	Wei To Net	ght on Ton	Exhaust Gas Temp. (⁰ C)	Dimension L x H x W (mtr.)	Heating Surface (M2)	No. of Thermal Tubes	Steam (Kg/cm2)	AIR Resistance (mmH2O)	GENSET Diesel Generation Capacity KW	TVTB-BOILER EVAPORATION Kg/Hour
CRG - 152	0.6	0.9	320-380	1.47 x 2.1 x 1.08	18.6	56	6	20	330	150-220
CRG - 203	1.0	1.4	320-380	1.8 x 2.55 x 1.29	36	77	6	20	450	250- 300
CRG - 345	1.7	2.2	320-380	1.97 x 2.63 x 1.31	52.8	115	6	30	675	400- 450
CRG - 406	2.0	2.4	320-380	2.2 x 2.83 x 1.31	66	115	6	30	900	520- 600
CRG - 575	2.2	2.8	320-380	2.3 x 3.2 x 1.52	128	115	6	40	1125	680- 750
CRG - 609	2.6	3.4	320-380	2.53 x 3.0 x 1.52	165	115	6	40	1350	800- 900
CRG - 710	2.8	3.4	320-380	2.5 x 3.0 x 1.4	170	138	6	50	1500	900-1050
CRG - 812	3.2	4.0	320-380	3.02 x 4.05 x 1.6	180	138	6	50	1800	1100-1200
CRG - 1015	4.5	5.3	320-380	3.2 x 4.25 x 1.8	200	138	6	50	2250	1400-1500
CRG - 1522	6.2	7.4	320-380	3.6 x 4.5 x 1.9	220	160	6	60	3300	2100- 2200
CRG - 2030	7.75	9.35	320-380	3.9 x 4.7 x 2.0	240	160	6	60	4500	2900- 3000
CRG - 2537	9.25	11.3	320-380	4.2 x 4.8 x 2.2	260	160	6	60	5600	3600- 3750

For inquiry, please state the following information.

Selected CRG	CRG-
Genset year	
Genset capacity (KW)	KW
Exhaust gas temp.	oC
Exhaust gas volume	m3/h
Steam press. required	kg/cm2
Purpose of steam	

HAMADA BOILER model CRG1522 is installed for 3 units of Yanmar Diesel Generator of 1350 KW, 1350 KW, and 1100 KW (total of 3800 KW). With the waste gas temperature of 320 oC at the entrance of the Boiler, TVTB boiler can generating 2,200 Kg/H of steam at the pressure of 6 Kg/cm2 constantly.

PT. INDONESIA ASAHI CHEMICAL INDUSTRY (INDACI) CRG1522 Ubrug, Jatiluhur, Purwakarta, Jawa Barat

PT. HAMADA DAYATEKNINDO

Sabgrila Indah II JL. Saki II No. 15, Ciledug Raya Kebayoran Lama, Jakarta Selatan 12270, Indonesia TEL. (021)735-3167 7388-3546 FAX.(021) 7388-3402 (Heat Pipe Boiler)

Tube arrangement drawing

CRG-1500 operating at PT. SUMIRUBBER (DUNLOP), Cikampek

Generate steam out of waste flue gas from Steam Boiler and/or Diesel Generator

Liquid evaporates much lower temperature under vacuum condition than under atmospheric pressure. This is the basic principle of vacuum tube heat exchanger used forlow temperature waste gas of about 300 oC to extract highest possible energy out of exhaust gas of Steam Boiler and/or Diesel Generator.

Gas will get in touch with the completely sealed straight tubes (finned) with total vacuum inside and filled with special chemical.

Principle of Heat Pipe Heat Transfer: *Low evaporation temperature inside Vacuum tube *Heat transfer by "Latent Heat" of the liquid inside the vacuum tube.

Loss from the exhaust manifold of diesel engine is 33.6% of the total heat input. Setting aside the chimney loss of 13.6%, 20% can be recovered by heat pipe waste receivery boiler.

Heat Pipe Technology: Heat Pipe technology was developed by NASA of USA for space industry. It's excellent heat transfer efficiency has been utilized in many parts of space shattle body. When used for heat recovery from relatively low temperature waste gas of 200-400 oC, heat pipe gives unbeatable excellency over any other conventional method. 1/3rd of Vacuum heat pipe is filled with water and lower portion is exposed to the waste gas.

Heat Pipe

Water inside the tube start evaporating at as low as 60 oC and it transfer the heat by latent heat of the evaporation to the higher portion of tube emerged into the boiler water. It maintains always slightly higher pressure than the pressure of the boiler, thus transfer of latent heat will be constant. Application of Heat Pipe is very wide. It can also be used to recover the waste heat of the room airconditioning unit when heat pipe unit is connected to the frion gas circulation kit to heat up the water for home use.

Gas Temp.

20 - 100 oC Low Med-Low 100 - 250 oC Med-High 250 - 400 oC 500 -1000 oC High We also supply Vacuum Tube only. Please specify the purpose and size /material of tube.

Material of pipe	Carbon steel, Stainless steel
OD of base pipe (mm)	OD $ ot\!\!\!\!/$ 25 - 219 mm
Length of Fin pipe(m)	0.5 - 1.4 Meter
Materia of Fin	Carbon steel, Stainless steel
Height of Fin(mm)	13, 15, 18, 20, 25, 30 mm
Thickness of Fin(mm)	1, 1.3, 1.6, 2, 3 mm
Density of Fin(mm)	5 - 20 mm

JARRANA

LIST OF USERS HAMADA BIOMASS FIRED BOILER - 1 (INDONESIA)

NO	COMPANIES NAME	PRODUCT	MODEL	FUEL	CAPACITY	UNIT	year
8 1	PT. ALBA PARAHYANGAN	Kiln Dry	Fixed Grate	Wood	3 Ton/hr.	1	1080
01	Bandung		RC 3000		10 Kg/cm2	1	1909
82	PT. ARGO DAYA SEJATI	Kiln Dry	Fixed Grate	Wood	5 Ton/hr.	1	1990
02	Palembang		RC 5000		10 Kg/cm2		1000
83	PT. BIO NUSANTARA TEKNOLOGI	Palm Oil Mill	Dumping Grate	Palm	20 Ton/hr.	1	1990
	Bengkulu		SHL 20 DG	Waste	25 Kg/cm2		
84	BPPT, BANDUNG RESEARCH	Ministry of	Cyclonic Furnace	Biomass	1.5 Ton/hr.	1	1992
01	INSTITUTE OF ENERGY	Energy	LSG-1500		10 Kg/cm2	·	1002
85	PT. EXCELSIOR FURNITURE	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1991
	Jakarta		LSG 1500		10 Kg/cm2		
86	PT. FAJAR SUBUR	Chopstick	Fixed Grate	Wood	2.5 Ton/hr.	1	1991
	Bandung		RC 2500		10 Kg/cm2		
87		Kiln Dry	Fixed Grate	Wood	1.5 I on/hr.	1	1992
	Banjarmasin PT IDEC ABADI	Dhave a d	LSG 1500	M/a a d	10 Kg/cm2		
88	PI. IDEC ABADI	Piywood	Fixed Grate	vvood	10 Ton/nr.	1	1992
		Toxtilo	Waste Heat Re	COVERV	1.5 Ton		
89	Purwakarta	Textile	Heat Pine Br	oiler	10 Kg/cm2	2	1993
-	PT. INDOCOCO I TD.	Kiln Drv	Fixed Grate	Wood	1.5 Ton/hr		
90	.lakarta	Turi Diy	HRV 1500	Wood	10 Kg/cm2	1	1992
	PT. INDOWANA CITRA PERSADA	Kiln Drv	Fixed Grate	Wood	1.5 Ton/hr.		
91	Tangerang		HRV 1500		10 Ka/cm2	1	1994
	PT. INDOTROPIC PERDANA	Woos	Fixed Grate	Wood	1.5 Ton/ht		
92	Serang		LGW 1500		10 Kg/cm2	1	1994
00	PT. SUMIRÜBBER (DUNLOP) INDONESIA	4	Heat Pipe	waste gas	2 Ton/hr.	4	4005
93	Cikampek		CRG2000	leat recover	У	1	1995
0.4	PT. KAYAN PATRIA PRATAMA	Kiln Dry	Fixed Grate	Wood	4 Ton/hr.	4	4005
94	Surabaya	_	RC 4000	1	10 Kg/cm2		1995
95	PT. KAYU LAPIS ASLI MURNI	Kiln Dry	Fixed Grate	Sawdust	6 Ton/hr.	1	1005
90	Banjarmasin		D 6:16		10 Kg/cm2	I	1990
96	PT. KAYU LAPIS INDONESIA	Plywood	Fixed Grate	Wood	10 Ton/hr.	1	100/
50	Semarang		D 10:17		16 Kg/cm2	'	1004
97	PT. KUTAI TIMBER	Wood	Fixed Grate	Wood	150000 kcal	1	1995
•••	Probolinggo		D 10:17		Thermal Oil		
98	PT. LANCAR BUANA	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1996
	Jakarta		LSG 1500		10 Kg/cm2		
99	PT. LONTAR PAPYRUS IND.	Papermill	Inclined Grate	Wood	6 Ion/hr.	1	1993
			LGW 6000) Manad	10 Kg/cm2		
100	PI. MAJU KARTA KITA	Kiin Dry		vvood	2 TON/Nr.	1	1994
		Wood Ind	RC 2000	Wood Chip	10 Kg/Clliz		
101	FI: MERATOS RAL. HMBER	wood ma.	PC 5000	wood Chip	10 Kg/cm2	1	1995
		Textile	Inclined Grate	Wood	8 Ton/hr		
102	Tangerang	1 CALIC	WF 8000	Wood	10 Kg/cm2	1	1995
	PT. MINTAWI	Oil Mill	Fixed Grate	Wood	5 Ton/hr.		
103	Pontianak	•	RC5000		10 Kg/cm2	1	1995
404	PT. MIRA RANTIH	D. Coconut	Fixed Grate	Cocoshell	1.5 Ton/hr.		4000
104	Lampung		LSG 1500	1	10 Kg/cm2	1	1996
105	PT. MULIA JAYA	Oil Refinery	Fixed Grate	Wood	5 Ton/hr.	4	1000
105	Pontianak		LGW 5000		10 Kg/cm2		1990
106	PT. MULTI CONSERVINDO	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1005
100	Surabaya		LSG 1501		10 Kg/cm2	I	1990
107	PT. MUTIARA TIMBUL SAKTI	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1996
	Pontianak		LSG 1501		10 Kg/cm2		
108	PT. INDOSEPAMAS ADIDAS	Shoe Manuf.	Fixed Grate	Rubber	4 Ton/hr.	1	1997
	Cibinong		RC 4000		10 Kg/cm2		
109	PI. PADANG SARI KELAPAINDO	D.Coconut	Fixed Grate	Wood	6 Ton/hr.	1	1997
	Padang		D 6:16	0:1/0	10 Kg/cm2		
110		Chemical	Fixed Grate	OII/Gas	10 Ion/hr.	1	1996
		Donail Clate	KSZS 10:13	Waste gas	10 Kg/cm2		
111	Palambang	Pencil Slats	PC 5000	vvooachip	5 I ON/Nr.	1	1995
		Kilo Dov		Mood	10 Kg/CIIIZ		
112	Ranjarmasin		L3G 1300	vvoou	10 Ka/cm2	1	1995
	Danjamaon				10 Kg/offiz		

LIST OF USERS HAMADA BIOMASS FIRED BOILER - 2 (INDONESIA)

113	PT. POLWOOD FOREST IND.	Kiln Dry	Fixed Grate	Wood	5 Ton/hr.	1	1996
113	U. Pandang		RC5000		10 Kg/cm2	· ·	1990
11/	PT. PONTI ABADI	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1006
114	Pontianak		LSG1500		10 Kg/cm2	•	1330
115	PT. PULAU SAMBU	Oil Mill	Fixed Grate	Wood	5 Ton/hr.	2	1994
110	Riau		RC5000		10 Kg/cm2	2	1004
116	PT. RIMBA RAMIN	Plywood	Fixed Grate	Wood	8 Ton/hr.	2	1993
110	Pontianak		LGW8000		10 Kg/cm2	2	1000
117	PT. GUNUNG JAYA AGUNG	Papermill	Fixed Grate	Coal	10 ton/H	2	1994
	Tangerang		D-10-16		16 Kg/cm2		
118	PT. SARI HIJAU MUTIARA	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1996
	Tagerang		HRV1500		10 Kg/cm2		
119	PT. SATRIA BANGUN SEJATI	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1995
_	Banjarmasin		HRV1500		10 Kg/cm2		
120	PT. SERBAGUNA PRIMA	Wood Ind.	Fixed Grate	Wood	4 Ton/hr.	2	1994
	Surabaya		RC4000		10 Kg/cm2		
121	PT. SERBAGUNA PRIMA	Plastic	Fixed Grate	Plastic waste	200 kg	1	1994
	Semarang	<u></u>	LGW2000		waste		
122	PT. SINAR ALAM PERMAI	Oil Mill	Fixed Grate	Wood	6 Ion/hr.	1	1993
	Palembang		D-6-16		10 Kg/cm2		
123	PT. SONG JAYA	Kiln Dry	Fixed Grate	Wood	5 Ton/hr.	1	1993
	Jakarta		RC5000		10 Kg/cm2		
124	PT. SUKOWATI	l extile, Fin.	Fixed Grate	Wood	2.5 I on/hr.	1	1994
	Jawa lengah		RC2500		10 Kg/cm2		
125		Rattan	Fixed Grate	Wood	1 Ion/hr.	1	1999
	Tangerang		HRV2500		10 Kg/cm2		
126	PT. SUMBER KAYU PERSADA	Kiln Dry	Fixed Grate	Wood	5 Ton/hr.	1	1995
_	Jakarta		RC2500		10 Kg/cm2		
127	PT. SUPARMA PAPER	Papermill	Fixed Grate	Wood	10 Ton/hr.	1	1997
	Surabaya		D-10-16		16 Kg/cm2		
128	PT. SURA INDAH WOOD IND.	Kiln Dry	Fixed Grate	Wood	10 Ton/hr.	1	1996
0	Surabaya		D-10-16		16 Kg/cm2		
129	PT. SUWARAN JAYA	Kiln Dry	Fixed Grate	Wood	6 Ton/hr.	1	1996
	Tarakan		LGW6000		16 Kg/cm2		
130	PT. TELAGA ALAM JAYA	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1996
	Jakarta		LSG1500		10 Kg/cm2		
131	PT. TIMBUL PERKASA	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1997
	Surabaya		HRV1500		10 Kg/cm2		
132	PT. TIMUR SELATAN	Kiln Dry	Fixed Grate	Wood	4 Ton/hr.	1	1998
102	Surabaya		RC4000		10 Kg/cm2	•	1000
133	PT. TJIWI KIMIA	Papermill	Fixed Grate	Wood	6 Ton/hr.	1	1999
100	Surabaya		RC6000		10 Kg/cm2	•	1000
134	PT. WENANG SAKTI (YAMAHA)	Kiln Dry	Fixed Grate	Wood	1.5 Ton/hr.	1	1998
.07	Surabaya		LSG1500		10 Kg/cm2		
135	PT. WIDJAYA TRI UTAMA	Plywood	Fixed Grate	Wood	10 Ton/hr.	1	1997
	U. Pandang		D-10-16		16 Kg/cm2		
136	CV. WILLIS	Oil Mill	Fixed Grate	Wood	6 Ton/hr.	1	1998
100	Pontianak		D-6-16		16 Kg/cm2	•	1000
137	PT. SASA INTI	MSE	Multi Nozzle	Carbon	500 Kg/h	1	1999
.01	Probolinggo		LSG500	Waste			
138	PT. MARUFUJI KENZAI INDONESIA	Wood Ind.	Multi Nozzle	Sawdust	500 Kg/h	1	2001
100	Mojokerto		LSG500	Wood			2001
139	PT. INDONESIA MATSUYA	Wood Ind.	Multi Nozzle	Sawdust	500 Kg/h	1	2000
.00	Pasuruan		LSG500	Wood			_000
140	PT. DAIKEN INDONESIA	Wood Ind.	Multi Nozzle	Sawdust	500 Kg/h	1	1998
UT-1	Pasuruan		LSG500	Wood			1000
141	PT. TOYOTAKA INDONESIA	Wood Ind.	Multi Nozzle	Sawdust	500 Kg/h	1	1999
171	Tangerang		LSG500	Wood		' '	1000
142	PT. MIRA RANTIH	COCOA	FIXED GRATE	Cocoa	2 Ton/Hr	1	2000
174	Lampung		LSG2000	wasgte	10 Kg/cm2	<u>'</u>	2000
143	PT. MASARI DWISEPAKAT FIBER	Wood Ind.	Reciprocating	wood	25 Ton/Hr	1	2002
	Cikampek		DFR25		25 Kg/cm2	<u> </u>	2002
				Total Bioma	ss Boiler	68	
				Total Coal F	ired Boiler	110	
				Grand Total	(units)	178	

LIST OF HAMADA COAL FIRED BOILER USERS - 1 (INDONESIA)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER CA	APA	CITY	Year
1	PT. AGUNG TEXTILE	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	unit	1000
	Solo		Model DF-12-16	16 Kg/cm2			1990
2	PT. CIPTA PAPERIA	PAPER	Fluidized Bed System	16 Ton/Hr	1	unit	2002
2	Ciujung, Jawa Barat		Model DF-16-16	16 Kg/cm2			2002
З	BADAN PENGKAJIAN & PENERAPAN	Ministry of	Fluidized Bed System	1.5 Ton/Hr	1	unit	1991
Ŭ	TEKNOLOGY (BPPT) Serpong	Energy	Model LSG1500FBC	16 Kg/cm2			1001
4	PT. INDONESIA TORAY SYNTHETICS	Synthetic	CHAIN GRATE (EXT.)	35 Ton/h	2	units	2003
-	Tangerang (I.T.S.)	Fiber	Model SHL-35-25	25 Kg/cm2			2000
5	PT. EASTERN STAR	PAPER	CHAIN GRATE (EXT.)	6 Ton/Hr	1	unit	1992
Ŭ	Tangerang		Model D-10-16	16 Kg/cm2			
6	PT. GOLDEN SARI CHEMICAL	CHEMICAL	CHAIN GRATE (EXT.)	10 Ton/Hr	2	units	1993
Ŭ	Lampung		Model D-10-16	16 Kg/cm2			
7	PT. PUTERA MULYA	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	units	2002
	majalaya, Bandung		Model DF-12-16	16 Kg/cm2			
8	PT. INDORAYA EVERLATEX	GLOVE	Fluidized Bed System	3,000,000	2	units	1995
_	Banjarmasin		QXL 300 FBC	KCal/Hr			
9	PT. JAYA KERTAS	PAPER	CHAIN GRATE (EXT.)	10 Ton/Hr	4	units	1993
Ŭ	Surabaya		Model D-10-16	16 Kg/cm2			
10	PT. KERTAS BASUKI RACHMAT	PAPER	CHAIN GRATE (EXT.)	20 Ton/Hr	3	units	1994
10	Banyuwangi		Model D-20-25	25 Kg/cm2			1004
11	PT. LOJIKANATAMA TEXTILE	TEXTILE	Fluidized Bed System	12 Ton/Hr	2	units	1990
	Pekalongan		Model DF-12-16	16 Kg/cm2			1330
12	PT. MASAYU MITRA SANDANG	TEXTILE	Fluidized Bed System	2 Ton/Hr	1	unit	1990
12	Bandung		Model LSG2000FBC	10 Kg/cm2			1000
13	PT. TIFICO (TEIJIN Indonesia Fiber Corp)	Synthetic	Fluidized Bed System	22 ton/hr	2	units	2002
10	Tangerang	Fiber	Model DF-25-25	25 Kg/cm2			2002
14	PT. PABRIK KERTAS TJIWI KIMIA	PAPER	FIXED GRATE	10 Tom/h	1	unit	1993
17	Mojokerto		Model D-10-16	16 Kg/cm2			1335
15	PT. PADANG SARI KELAPA INDO	FOOD	CHAIN GRATE (EXT.)	6 Ton/Hr	1	unit	1000
15	Padang	coconut	Model D-10-16	16 Kg/cm2			1990
16	PT. POLA PULPINDO PAPERMILL	PAPER	CHAIN GRATE (EXT.)	10 Ton/Hr	2	units	1994
10	Lampung		Model D-10-16	16 Kg/cm2			1004
17	PT. POLLUX INDONESIA TEXTILE IND.	TEXTILE	CHAIN GRATE (EXT.)	10 Ton/Hr	1	unit	1994
	Bekasi		Model D-10-16	16 Kg/cm2			1334
18	PT. PURA BARUTAMA	PAPER	CHAIN GRATE (EXT.)	10 Ton/Hr	2	units	2000
10	Kudus		Model D-10-16	16 Kg/cm2			2000
19	PT. PURA NUSAPERSADA	PAPER	CHAIN GRATE (EXT.)	10 Ton/Hr	1	unit	1995
10	Pati, Kudus		Model D-10-16	16 Kg/cm2			1000
20	PT. RODA VIVATEX	TEXTILE	CHAIN GRATE (EXT.)	10 Ton/Hr	1	unit	1995
20	Cibinong		Model D-10-16	16 Kg/cm2			1000
21	PT. SENAYAN SANDANG MAKMUR TEXT	TEXTILE	CHAIN GRATE (EXT.)	10 Ton/Hr	1	unit	1994
21	Bandung		Model D-10-16	16 Kg/cm2			1001
22	PT. SINAR PLATACO (Semarang)	CHEMICAL	Fluidized Bed System	480,000 Kcal	1	unit	2003
	Semarang		Model QXL480FBC	Hot water			2000
23	PT. ALENATEX	TEXTILE	Fluidized Bed System	16 ton/hr	1	unit	2002
	Bandung		Model DF-12-16	16 Kg/cm2			-002
24	PT. SUPARMA PAPERMILL	PAPER	CHAIN GRATE EXT.	10 Ton/Hr	4	units	1992
	Surabaya		Model D-10-16	16 Kg/cm2			1002
25	PT. INTAN PRIMA	CHEMICAL	Fluidized Bed System	20 Ton/Hr	1	unit	1996
20	Lampung		convertion FBC	25 Kg/cm2			1000
26	PT. WING SURYA	DETERGEN	CHAIN GRATE EXT.	10 Ton/Hr	1	unit	1995
20	Surabaya		Model D-10-16	16 Kg/cm2			1000
27	PT. PURA NUSAPERSADA	PAPER	Fluidized Bed System	12 Ton/Hr	1	unit	2001
- 1	Pati-Kudus		Model DF-12-16	16 Kg/cm2			-001
28	NEDO PROJECT OF JAPANESE	Briket	Fluidized Bed System	1,000,000	1	unit	2000
20	GOVERNMENT - PT. Alas Wiratama	(government)	Model QXL1000FBC	KCal/Hr			2000
29	PT. KESMATEX INDONESIA	TEXTILE	Fluidized Bed System	16 Ton/Hr	1	unit	2003
23	Pekalongan		Model DF-16-16	16 Kg/cm2			2000
30	PT. ASWINDO JAYA SENTOSA	TEXTILE	COALMAC internal chain	12 Ton/Hr	1	unit	2003
50	BANDUNG		Model CMC-10-13	16 Kg/cm2			2000
31	PT. DELIMATEX BANDUNG	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	unit	2003
	BANDUNG		Model DF-12-16	16 Kg/cm2			2003

LIST OF HAMADA COAL FIRED BOILER USERS-2 (INDONESIA)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER CA	APA	CITY	Year
32	PT. BETEEN TEXTILE NUSANTARA	TEXTILE	COALMAC internal chain	10 Ton/Hr	1	unit	2003
52	BANDUNG		Model CMC-10-13	13 Kg/cm2			2003
22	PT. INDO ACIDATAMA	CHEMICAL	COALMAC internal chain	10 Ton/Hr	2	units	2002
33	Solo-Sragen		Model CMC-10-13	13 Kg/cm2			2003
24	PT. AGUNG KUNCORO	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	unit	2002
34	Solo-Sragen		Model DF-12-16	10 Kg/cm2			2003
0.5	PT. ENGGAL MUMBUL KERTAS	PAPER	Fluidized Bed System	12 Ton/Hr	1	unit	0000
35	Kudus-Pati, Jawa Tengah		Model DF-12-16	16 Kg/cm2			2003
	PT. PURA BARUTAMA 3&4	PAPER	COALMAC internal chain	5 Ton/Hr	2	units	0000
36	Kudus. Jawa Tengah		Model CMC-10-13	10 Ka/cm2			2003
	PT. KANEBO TEXTILE INDONESIA	TEXTILE	Fluidized Bed System	16 Ton/Hr	2	units	
37	Cikampek		Model DF-16-16	16 Ka/cm2			2003
	PT. FRANS PUTRATEX	TEXTILE	Fluidized Bed System	16 Ton/Hr	1	unit	
38	Serang		Model DF-16-16	16 Ka/cm2			2003
	CV. EVANAS JAYA	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	unit	
39	Bandung		Model DF-12-16	16 Kg/cm2			2003
	PT. GRAND TEXTILE INDUSTRY (Grandte	TEXTILE	Fluidized Bed System	16 Ton/Hr	1	unit	
40	Bandung	,	Model DF-16-16	16 Kg/cm2		ann	2003
	PT. SABATEX	TEXTILE	Fluidized Bed System	12 Ton/Hr	1	unit	
41	Bandung	,	Model DF-12-16	16 Kg/cm2		ann	2003
		Noodle	Fluidized Bed System	12 Ton/Hr	1	unit	
42	Pandaan Jawa Timur	Noodio	Model DF-12-16	16 Kg/cm2		unit	2004
	PT SRI REJEKI ISMAN (SRITEX)	ΤΕΧΤΙΙ Ε	Fluidized Bed System	16 Ton/Hr	2	units	
43	SOLO	TEXTILE	Model DE-16-16	16 Kg/cm2	2	units	2004
		Cooking Oil	Eluidized Bod System	12 Ton/Ur	1	unit	
44		COOKING OII	Model DE 12 16	12 T01/T1		um	2004
		Mockito			1	unit	
45	PEKASI	Coil	Model OXI 240CG	Z40 RCal/II		um	2004
					1	unit	
46	PI. BADJATEA	IEATILE	Model DE 16 16		. 1	unit	2004
					4		
47		FAFER		0 101/⊓I		unit	2004
					4		
48		PAPER				unit	2004
				16 Kg/cm2	4		
49		TEXTILE	Fiuldized Bed System	6 M KCAL/N	1	unit	2004
			Model DF-12-16	I nermal-oil	4		
50		TEXTILE	Fluidized Bed System	16 I ON/Hr	1	unit	2004
			Model DF-12-16	10 Kg/cm2	4		
51	PI. KEMASAN SEMPURNA	Cartonbox	COALMAC internal chain	5 Ion/Hr	1	unit	2004
	Pasuruan		Model CMC-5-13	10 Kg/cm2			
52		Cartonbox	COALMAC Internal chain	10 I on/Hr	1	unit	2004
		0	Model CMC-10-13	10 Kg/cm2			
53		Cigarett	Fluidized Bed System	16 Ion/Hr	2	units	2004
	Kediri	<u>.</u>	Model DF-16-16	10 Kg/cm2			
54	PT. LAUTAN OTSUKA CHEMICAL	Chemical	Fluidized Bed System	16 Ion/Hr	2	units	2004
	Merak		Model DF-16-16	16 Kg/cm2			
55	PT. TOSHIBA POWER PLANT EGNR	power plant	Heat Pipe Recovery Boiler	1.5 Ton/Hr	2	units	2005
	Jakarta		Model CRG1500	10 Kg/cm2			
56	PT. INDONESIA TORAY SYNTHETICS I	power plant	CFBC Fluidized Bed	75 Ton/Hr	1	unit	2005
	Tangerang		Model UG-75-60-450 CFBC	60 Kg/cm2			
57	PT. NIKAWATEX	power plant	CFBC Fluidized Bed	38 Ton/Hr	1	unit	2005
	Bekasi		Model UG-35-60-450 CFBC	60 Kg/cm2			
58	PT. BONANZA MEGAH LTD	Cooking Oil	Fluidized Bed System	12 Ton/Hr	1	unit	2005
	Semarang		Model DF-12-16	16 Kg/cm2			
59	PT. KEMASAN SEMPURNA	Fish Canning	Pulverized Burner Boiler	2,.5 Ton/Hr	3	unit	2005
<u> </u>	Pasuruan		Model PCB-3	13 Kg/cm2			
60	PT. PACIFIC HARVEST	Noodle	Pulverized Burner Boiler	5 Ton/Hr	1	unit	2005
	Pandaan, Jawa Timur		Model PCB5	10 Kg/cm2			-000
61	PT. RAPI SARANA TEXPRO	Processing	Pulverized Burner Boiler	5 Ton/Hr	1	unit	2005
51	Pandaan, Jawa Timur		Model PCB-5	10 Kg/cm2			2000
62	PT. INDONESIA TORAY SYNTHETICS 2	Fiber	CFBC Fluidized Bed	75 Ton/Hr	1	unit	2005
52	TANGERANG, Jawa Barat		CO-GENERATION POWER PLANT	60 Kg/cm2			2000

LIST OF HAMADA COAL FIRED BOILER USERS-3 (INDONESIA)

NO		COMPANY NAME	PRODUCT	SYSTEM	BOILER CA	PAC	ITY	Year
63	PT.	EASTERNTEX	Textile	Fluidized Bed (CFBC)	75 Ton/Hr	1	unit	
		PANDAAN, Jawa Timur		Model UG-75-60-450 CFBC	60 Kg/cm2			2006
64	PT.	PUTRA PILE INDONESIA	Textile	Pulverized Burner Boiler	5 Ton/Hr	1	unit	
		TANGERANG		Model PCB-5	10 Kg/cm2			2006
65	PT.	MAS GANDA	Textile	COALMAC internal chain	5 Ton/Hr	1	unit	
		TANGERANG		Model CMC-5-13	10 Kg/cm2			2006
66	PT.	SAMUDRA	Textile	Fluidized Bed System	8 Ton/Hr	1	unit	
		PANDAAN, Jawa Timur		Model DF-8-13	10 Kg/cm2			2006
67	PT.	DELIMATEX	Textile	Fluidized Bed System	400K Kcal/h	1	unit	
		BANDUNG		Model QXL-400FBC	oil heater			2006
68	PT.	ASIAPLAST	Plastic	Fluidized Bed System	400K Kcal/h	1	unit	
		TANGERANG		Model QXL-400FBC	oil heater			2006
69	PT.	Mayora food company	FOOD	Fluidized Bed System	12 TON/H	1	unit	
		BOGOR		Model DF-12-13	10 Kg/cm2			2007
70	PT.	HUNG A INDONESIA	TIRE	Fluidized Bed System	16 TON/H	1	unit	
		LIPO CIKARANG		Model DF-16-25	25 Kg/cm2			2007
71	PT.	ARAMI JAYA	TIRE	COALMAC internal chain	5 TON/H	1	unit	
		LIPO CIKARANG		Model CMC-5-16	16 Kg/cm2			2007
72	PT.	WIDJAYA PANCA FOOD	NOODLE	Fluidized Bed System	10 TON/H	1	unit	
		SURABAYA		Model DF-10-13	10 Kg/cm2			2007
73	PT.	SALIM IVO MAS (BIMOLI)	NOODLE	Fluidized Bed System	12 TON/H	2	unit	
		SULAWESI		Model DF-12-13	16 Kg/cm2			2007
74	PT.	MIE JANKAR	NOODLE	Pulverized Burner Boiler	10 TON/H	1	unit	
		JAWA TENGAH		Convertion	10 Kg/cm2			2007
75	PT.	GANDA SUKSES	NOODLE	Pulverized Burner Boiler	3 TON/H	1	unit	
		JAWA TENGAH		Model PCB-3	10 kg/cm2			2007
76	PT.	MEGA MARINE TUNA CANNING	TUNA	Pulverized Burner Boiler	5 TON/H	1	unit	
		PASURUAN	CANNING	Model PCB-CMC-5	10 Kg/cm2			2007
77	PT.	INTER FORMINDO	STYRO	Pulverized Burner Boiler	3 TON/H	1	unit	
		JAWA BARAT	FOAM	Model PCB-3	Kg/cm2			2007
78	PT.	SALIM IVOMAS (BIMOLI)	COOKING OIL	Fluidized Bed System	4 TON/H	1	unit	
		MOUTONG		Model DF-4-13	10 Kg/cm2			2008
79	PT.	SALIM IVOMAS (BIMOLI)	COOKING OIL	Fluidized Bed System	4 TON/H	1	unit	
		TOBELO		Model DF-4-13	10 Kg/cm2			2008
80	PT.	SADHANA ARIFNUSA	CIGARET	Fluidized Bed System	6 TON/H	2	unit	
0.4	DT	PASURUAN, JAWA TIMUR	TIDE	Model DF6-13	13 Kg/cm2	4		2008
81	PT.		TIRE	Fluidized Bed System	12 ION/H	1	unit	0000
	DT		TIDE	Model DF-12-25	25 Kg/cm2			2008
82	ΡΙ.		TIRE	Fluidized Bed System	25 ION/H	1	unit	0000
00	DT			Model DF-25-20	20 Kg/cm2	<u> </u>		2008
83	P1.		SUGAR	Fluidized Bed System	25 I UN/H	2	unit	0000
		SEMARANG		CONVERTION	25 Kg/cm2			2008

as of August 2008

Total **110** units

۰		

LIST OF HAMADA COAL FIRED BOILER USERS (TAIWAN R.O.C.)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER CAPACITY		Year
1	CHENG LOONG PAPERMILL	PAPER	Fluidized Bed System	22 Ton/Hr	2 unit	
	CHUBEI FACTORY		COAL FIRED:DF-22-25	25 Kg/cm2		2007
2	YEONG FONG YI PAPERMILL	PAPER	Fluidized Bed System	12 Ton/Hr	1 unit	
	YANMEI PLANT 楊梅廠		COAL FIRED:DF-12-20	25 Kg/cm2	I	2007
3	YEONG FONG YI PAPERMILL	PAPER	Fluidized Bed System	16 Ton/Hr	1 unit	
	QINSUI PLANT 清水廠		COAL FIRED:DF-16-20	25 Kg/cm2	I	2007
4	YEONG FONG YI PAPERMILL	PAPER	Fluidized Bed System	22 Ton/Hr	1 unit	
	DOU LIU FACTORY 斗六廠		COAL FIRED:DF-22-25	25 Kg/cm2		2007
5	CHENG LOONG PAPERMILL	PAPER	Fluidized Bed System	22 Ton/Hr	2 unit	
	TAYUAN FACTORY		COAL FIRED:DF-22-25	25 Kg/cm2	T	2008
			as of August 2008	Total	7 units	

as of August 2008

LIST OF HAMADA COAL FIRED BOILER USERS (MALAYSIA) 1993-1996

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER CAPACITY	Year
1	H.K.LAMTECH BHD	KILN DRY	Fixed Grate wood fire	1.5 T/H 1 unit	1002
I	Kedah		Model LSG 1500	10 Kg/cm2	1993
2	TIMBER MASTER SDN.BHD.	Plywood	Fixed Grate wood fire	35 T/H 1 unit	1004
2	Kucing		Model SHL-35-39	39 Kg/cm2	1994
З	KILANG PAPAN LIM AH SOON	Plywood	Fixed Grate wood fire	10 T/H 1 unit	1005
5	Kuala Lumpur		Model D-10-16	16 Kg/cm2	1995
4	KIAT LEONG CORP. SDN. BHD.	Plywood	Fixed Grate wood fire	4 T/H 1 unit	1004
4	Sabah		Model RC-4000	13 Kg/cm2	1994
5	RIDON WOOD PROD. SDN. BHD.	Plywood	Fixed Grate wood fire	4 T/H 1 unit	1004
5	Sabah		Model RC-4000	13 Kg/cm2	1994
6	SYARIKAT TEONG SHENG S/B	Plywood	Fixed Grate wood fire	10 T/H 1 unit	1004
0	Sabah		Model D-10-16	16 Kg/cm2	1994
7	MAKESON SDN. BHD.	Plywood	Fixed Grate wood fire	4 T/H 1 unit	1005
'	Sabah		Model RC-4000	13 Kg/cm2	1995
8	TIMBER MASTER SDN. BHD.	Plywood	Fixed Grate wood fire	10 T/H 2 units	1004
0	Kucing		Model D-10-16	16 Kg/cm2	1994
0	KILANG KELAPA SAWIT BELL	Palm Oil Mill	Fixed Grate wood fire	35 T/H 1 unit	1004
9	Sabah		Model SHP-35-35	35 Kg/cm2	1990
10	KILANG SAWIT BAHRU	Palm Oil Mill	Fixed Grate wood fire	35 T/H 1 unit	1004
10	Negeri Sembilan		Model SHP-35-35	35 Kg/cm2	1990
11	SYARIKAT PERUSAHAAN KELAPA	Palm Oil Mill	Cyclone Furnace	40 T/H 1 unit	1006
11	Sabah		DBW-FW-40	39 Kg/cm2	1990

total 12 units

6				total		
	LIST OF HAMADA BOU F	R USERS (MALAYSIA) 2008 -			
NO	COMPANY NAME		SYSTEM	BOILER CA	PACITY	Year
12	WANGSAGA INDUSTRIES	PVC mfg	Fluidized Bed Combustion	6M Kcal/H	1 unit	2000
12	Pinang		Model QXL-600	Thermal Oil		2008
13	MUDA PAPERMILL SDN BHD	papermill	Fluidized Bed Combustion	22 T/H	3 units	2008
10	Penang		Model DF-25-13	13 Kg/cm2		2000
14	MUDA PAPERMILL SDN BHD	papermill	Fluidized Bed Combustion	22 T/H	3 units	2008
• •	Kajang		Model DF-25-13	13 Kg/cm2		2000
15						
		_				
16						
17						
18						
19						
20						
20						
21						
21						
22						

*

HAMADA COAL FIRED BOILER USERS (PHILIPPINES)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER C	APA	(CIT)	Year
1	EVERGREEN TEXTILE	TEXTILE	Fluidized Bed System (BFB)	16 Ton/Hr	2	units	2005
1	Valenzuela, Bulacan	FINISHING	MODEL DF-16-13 X 2	13Kg/cm2			2005
2	MEGAPACK PAPERMILL	PAPERMILL	Fluidized Bed System(BFB)	22 Ton/Hr	1	unit	2005
2	Batangas	CARTONBOX	MODEL DF-22-16	16 Kg/cm2			2005
З	NOAH'S PAPERMILL INC	PAPERMILL	Fluidized Bed System (BFB)	16 Ton/Hr	1	unit	2005
5	Marikina		MODEL DF-16-16	16 Kg/cm2			2003
4	CONTAINER CORPORATION OF TH	PAPERMILL	Fluidized Bed System (BFB)	16 Ton/Hr	1	unit	2005
	PHILIPPINES (CCP)- Quezon City		MODEL DF-16-16	16 Kg/cm2			2000
5	LIBERTY PAPER MILL	PAPERMILL	Fluidized Bed System (BFB)	12 Ton/Hr	1	unit	2005
Ŭ	Valenzuela		MODEL DF-12-13	13Kg/cm2			2000
6	SAFRON TEXTILE MILL	TEXTILE	Fluidized Bed System (BFB)	16 Ton/Hr	1	unit	2005
-	Cavite		MODEL DF-16-13	13Kg/cm2			
7	SOLID DEVELOPMENT CORP	PAPERMILL	Fluidized Bed System (BFB)	8 Ton/Hr	1	unit	2005
	Valenzuela, Bulacan		MODEL DF-8-13	13Kg/cm2			
8	MILESTONE PAPER -1	PAPERMILL	Fluidized Bed System (BFB)	16 Ton/Hr	1	unit	2005
	Valenzuela, Bulacan	BABEB	MODEL DF-16-13	13Kg/cm2			
9	MILESTONE PAPER -2	PAPERMILL	Fluidized Bed System (BFB)	12 Ion/Hr	1	unit	2005
	Cabuyao, Laguna	DADEDMILL	MODEL DF-12-13	13Kg/cm2			
10		PAPERMILL		8 Ion/Hr	1	unit	2006
			MODEL DF-8-13	13Kg/cm2	4		
11				16 10N/Hr	1	unit	2006
			MODEL DF-16-13	13Kg/cm2	4	unit	
12				10 101/11	I	unit	2006
			MODEL DF-10-13	12 Ton/Ur	1	unit	
13				12 101/11	I	uniit	2006
		RUBBER	Fluidized Bed System (BEB	12 Ton/Hr	1	unit	
14		ROBBER	MODEL DE-12-13	13Ka/cm2	1	unit	2006
				5 TON/H	1	unit	
15			MODEL PCB-5	10 Kg/cm2		unit	2006
	PERMEX PRODUCERS & EXP. COR	Tuna Canning	Fluidized Bed System (BEB	22 TON/H	1	unit	
16	Zamboanga	rana Ganning	MODEL DE-22-13	16 Kg/cm2		unit	2006
	LIGO Sardin Canning	Sardin canning	Fluidized Bed System (BFB	12	1	unit	
17	Zamboanga	earain earning	MODEL DE-12-13	13			2007
	ZEST-O CORPORATION	Food	Fluidized Bed System (BFB	12 ton/H	1	unit	
18	Valenzuela		MODEL DF-12-13	13 Ka/cm2	-		2007
	ATLANTIC CANNING CORP	Tuna Canning	Fluidized Bed System (BFB	12 ton/H	1	unit	
19	Zamboanga		MODEL DF-12-13	13 Ka/cm2			2007
	UNIVERSAL TUNA CANNING	Tuna Canning	Fluidized Bed System (BFB	16 ton/H	1	unit	
20	Zamboanga	5	MODEL DF-16-13	13 Kg/cm2			2007
	COLON House of Noodles	Bihon	Fluidized Bed Svstem (BFB	8 ton/H	1	unit	
21	CEBU	-	MODEL DF-8-13	13 Kg/cm2		-	2007
	SPRINT(HEINZ-UFC-DATU PUTI)	Rent-a-Boiler	Fluidized Bed Svstem (BFB	8 ton/H	1	unit	
23	Meycauayan, Bulacan		MODEL DF-8-10	10 Kg/cm2		-	2007
05	GOLDEN SWAN PAPERMILL	PAPERMILL	Fluidized Bed System (BFB	22 ton/H	1	unit	0000
25	Cavite		MODEL DF-22-13	13 Kg/cm2			2008
			as of February 2008	Toral:	24	units	

HAMADA BOILER USERS (VIETNAM)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER C	APACITY	Year
1	CALOFIN OIL & FATS INDUSTRIES	VEG. OIL	Travelloing Chain Grate	10 Ton/Hr	1 unit	2006
1	CAN THO CITY-1st unit	rice husk	SZL-12-16	13 Kg/cm2		2000
2	CALOFIN OIL & FATS INDUSTRIES	VEG. OIL	Travelloing Chain Grate	10 Ton/Hr	1 unit	2006
2	CAN THO CITY- 2nd unit	rice husk	SZL-12-16	13 Kg/cm2		2000
2	TPC VINA Plastic & Chemicals Co., I	PVC	Fluidized Bed System	22 Ton/Hr	1 unit	2007
3	Go Dau IZ, Long Thanh, Dong Nai	COAL	DF-22-16	13 Kg/cm2		2007
1	PHU MY Plastic & Chemicals Co., Lt	PVC	Fluidized Bed System	22 Ton/Hr	1 unit	2008
4	Cai Mep Industrial Park, Dong Nai Province	COAL	DF-22-16	13 Kg/cm2		2000
5	CALOFIN OIL & FATS INDUSTRIES	VEG. OIL	Travelloing Chain Grate	6 Ton/Hr	1 unit	2008
5	CAN THO CITY- 3rd unit	rice husk	SZL-6-16	13 Kg/cm2		2000
6	CALOFIN OIL & FATS INDUSTRIES	VEG. OIL	Travelloing Chain Grate	22 Ton/Hr	1 unit	2008
0	CAN THO CITY- 4th unit	coal	DF-22-16	13 Kg/cm2		2000

LIST OF HAMADA COAL FIRED BOILER USERS (THAILAND)

NO	COMPANY NAME	PRODUCT	SYSTEM	BOILER CA	PACITY	Year
1	PACIFIC MARINE FOOD PRODUCTS	Tuna Canning	Fluidized Bed System	12 Ton/Hr	1 unit	2004
1	Thailand		Model DF-12-13	13Kg/cm2		2004
2	TIPCO	FOOD	Fluidized Bed System	22 Ton/Hr	2 units	2005
2	Thailand		Model DF-22-13	13 Kg/cm2		2005
3	SIAM RUBBER COMPANY	RUBBER	Fluidized Bed System	12 Ton/Hr	1 unit	2005
5	Thailand		Model DF-12-16	16 Kg/cm2		2005
Л	ASIAN ALLIANCE	Tuna Canning	Fluidized Bed System	16 Ton/h	2 units	2005
7	Thailand		Model DF-16-16	13Kg/cm2		2005
5	SUPATRTANAGORN PAPER MILL	PAPER	Fluidized Bed System	22 Ton/Hr	1 unit	2005
5	Thailand		Model DF-22-16	16 Kg/cm2		2005
6	ASIAN KRAFT PAPER MILL	PAPER	Fluidized Bed System	22 Ton/Hr	2 units	2005
0	Thailand		Model DF-22-13	16 Kg/cm2		2005
7	THAI UNION	Tuna Canning	Fluidized Bed System	22 Ton/Hr	1 unit	2005
'	Thailand		Model DF-22-13	13Kg/cm2		2005
8	SUPTRTANAGORN PAPER MILL	PAPER	Fluidized Bed System	16 Ton/Hr	1 unit	2005
0	Thailand		Model DF-16-16	16 Kg/cm2		2005
٥	SUPTRTANAGORN PAPER MILL	PAPER	Fluidized Bed System	16 Ton/Hr	1 unit	2005
5	Thailand		Model DF-16-16	16 Kg/cm2		2005
10	KONGSIRI TANNERY	TANNERY	Fluidized Bed System	10 Ton/Hr	1 unit	2006
10	Thailand		Model DF-10-16	8 Kg/cm2		2000
11	THAI THEPAROD	SOY SAUCE	Fluidized Bed System	10 Ton/Hr	1 unit	2006
	Thailand		Model DF-10-16	8 Kg/cm2		2000
12	SK FOOD	CANNING	Fluidized Bed System	12 Ton/Hr	1 unit	2007
12	Thailand		Model DF-12-13	10 Kg/cm2		2007
13	PB FISHERY	CANNING	Fluidized Bed System	12 Ton/Hr	1 unit	2008
10	Thailand		Model DF-12-13	10 Kg/cm2		2000
14	HIANGSENG PAPER CO., LTD	PAPERMILL	Fluidized Bed System	25 Ton/Hr	1 unit	2008
	Thailand		Model DF-25-13	13 Kg/cm2		2000
			as of MAY 2008	Total	17 units	

LIST OF HAMADA COAL FIRED POWER PLANT BOILERS (CFBC)

NO	USERS	PRODUCT	SYSTEM	BOILER CA	PACITY	Year
1	TORAY SYNTHETIC INDONESIA #1	SYNTHETIC	Fluidized Bed System	75 Ton/Hr	1 unit	2004
1	INDONESIA	FIBER	60 KG/CM2	450 oC	<u> </u>	2004
2	TORAY SYNTHETIC INDONESIA #2	SYNTHETIC	Fluidized Bed System	75 Ton/Hr	1 unit	2006
2	INDONESIA	FIBER	60 KG/CM2	450 oC	<u> </u>	2000
2	NIKAWATEXTILE INDONESIA	TEXTILE	Fluidized Bed System	35 Ton/Hr	1 unit	2006
3	INDONESIA		60 KG/CM2	450 oC	<u> </u>	2000
4	EASTERN TREXTILE (TORAY GROU	TEXTILE	Fluidized Bed System	75 Ton/h	1 unit	2007
4	INDONESIA	ľ	60 KG/CM2	450 oC	· · · · ·	2007

LIST OF HAMADA HEAT PIPE WASTE HEAT RECOVERY BOILERS

NO	USERS	PRODUCT	SYSTEM	BOILER CA	PACITY	Year
1	INDONESIA ASAHI CHEMICALS	SYNTHETIC	HEAT PIPE	2.5 Ton/Hr	2 unit	1009
I	INDONESIA	FIBER		10 KG/CM2		1990
2	SUMITOMO RUBBER (DUNLOP)	SYNTHETIC	HEAT PIPE	2 Ton/Hr	1 unit	2001
2	INDONESIA	FIBER		10 KG/CM2		2001
2	TOSHIBA POWER PLANT	INDUSTRIAL	HEAT PIPE	2 Ton/Hr	1 unit	2005
5	INDONESIA	ESTATE		10 KG/CM2		2005

株式会社 ジャコム(日本燃焼技術株式会社)

Sangrila Indah Dua, JI.Sakti II, No.15, Ciledug Raya,

| 国別ユーザーリスト | 目次 |

Kebayoran Lama, Jakarta 12270 INDONESIA

電話:+62-21-7353167,+62-21-73883546

FAX:+62-21-73883402

HAMADA BOILER JAKARTA OFFICE

Welcome

amada Bollar HISTORY

USER'S LIST

Hannada Bollor RODUCTS

dan Beelleer INQUIRY SHEET

Fuel Kcal

Water Treatment

浜田ボイラー ユーザーリスト 日系企業取引実績リスト

日系企業取引実績ノスト

会社名 使用国 ボイラーの種類 ボイラーの大きさ 完成年 事業内容 東芝発電部門 インドネシア WASTE HEAT RECOVERY BOILER 2 X 2 TON 2004年 - エネルギー事業 カネボー(株) FLUIDIZED BED COAL FIRED BOILER 16 TON/H X 2 2002年 インドネシア - 繊維工業 旭化成 1.5 TONX 2 WASTE HEAT RECOVERY BOILER 1997年 インドネシア - 繊維工業 住友ゴム 2 TON /H 1999年 インドネシア WASTE HEAT RECOVERY BOILER - ゴム製品 住友鉱山 FLUIDIZED BED COAL FIRED THERMAL 1,000,000 1997年 インドネシア - 豆炭製造 HEATER KCAL/H 野田合板 1990年 インドネシア D MODEL WOOD FIRED BOILER 10 TON/H - 合板工業 帝人 22 TON /H X 2 2002年 インドネシア **BUBBLING FBC BOILER X 2 UNITS** - 繊維工業 帝人 インドネシア BUBBLING FBC BOILER X 1 UNITS 22 TON /H X 1 2006年 - 繊維工業 東レ インドネシア CHAIN GRATE COAL FIRED BOILER 35 TON /H X 2 2002年 - 繊維工業 東レ インドネシア CIRCULATING CFBC BOILER 75 TON /H X 1 2004年 - 繊維工業 東レ インドネシア CIRCULATING CFBC BOILER 75 TON /H X 1 2006年 - 繊維工業 東レ インドネシア CFBC BOILER X 1 UNITS 75 TON /H X 1 2006年 - 繊維工業 日清紡 インドネシア CIRCULATING CFBC BOILER X 1 UNITS 35 TON /H X 1 2005年 - 繊維工業 大塚化学 インドネシア BUBBLING BFB FLUIDIZED BED BOILER 16 TON /H X 2 2003年 - 化学薬品 **Total Units** 20

History User's List Products Inquiry Sheet

